

AN EXPOSURE ASSESSMENT STRATEGY APPLIED TO CASE STUDIES WITHIN THE GUIDENANO & NANOMICEX PROJECTS

<u>Sally Spankie¹</u>, Andrew Apsley¹, Araceli Sánchez Jiménez¹, Derk Brouwer², Wouter Fransman³, Maida Domat³, Carlos Fito⁴, Martie van Tongeren¹

- ¹ Institute of Occupational Medicine (IOM), UK
- ² School of Public Health, University of the Witwatersrand, South Africa
- ³ Netherlands Organisation for Applied Scientific Research (TNO), The Netherlands;
- ⁴ Packaging, Transport and Logistics Research Centre (ITENE), Spain

BOHS 2016 conference 26-28 April 2016, Glasgow, Scotland

Case Studies

	Project	Case Study	Partners
Name	Aim		
GUIDEnano	Assessment & mitigation of	Handling MWCNT	ITENE &
(ongoing)	nano-enabled product risks on	during extrusion of	LATI
	human & environmental health	MWCNT-containing	
		polymers	
Nanomicex	Mitigation of risk & control of	Synthesis of nano-	ITENE &
(31.3.2014)	exposure in nanotechnology	TiO ₂ /CoAl ₂ O ₄ pigments	Torrecid
	based inks & pigments	by flame pyrolysis	

Projects funded from the European Union's 7th Framework Programme (FP7/2007-2013) under respective grant agreements № 604387 and 280713

Sampling Strategies

- Harmonised Tiered Approach to Measure & Assess the Potential Exposure to Airborne Emissions of Engineered Nano-Objects & their Agglomerates and Aggregates at Workplaces, Pubⁿ No. 55. OECD, 2015.
- Nanoparticle Emission Assessment Technique (NEAT) for the Identification and Measurement of Potential Inhalation Exposure to Engineered Nanomaterials as Part B: Results from 12 field studies. Methner et al. J Occup Env Hygiene 2010.
- Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. Pubⁿ No. 2013– 145. NIOSH, 2013.
- Uses a tiered approach where moving to a higher tier is solely based on exposure-related decision rules

Tiered Exposure Assessment Approach

Tier one

To develop and prioritise exposure scenarios.

Tier two

To identify sources of ENM emissions by measurements and estimate the potential for exposure.

Tier three

To quantify and characterise exposure as a size resolved airborne concentration and/or a personal exposure

Data Analyses

Decision logic developed to allow analysis of all results e.g. multi-metric, various instruments, limited speciation (by filter samples)

- Workplace air measurements & likelihood of exposure to manufactured nano-objects, agglomerates, & aggregates. Brouwer et al., J Nanopart Res, 2013.
- Occupational Exposure to Nano-Objects & their Agglomerates & Aggregates across various Life Cycle Stages; A Broad-Scale Exposure Study. Bekker et al., Ann Occup Hyg, 2015.

Basis for Interpretation of Results

SEM/EDX results ENM identified in		Measured airborne concentrations	Other NP sources	Overall likelihood of	
activity samples	Backgr'd samples	Comparison of Act ^y with Bgd as A/B &/or expert opinion		exposure	
Yes	No	Significant, A/B≥2	No	Likely	
Yes	Yes	Less significant, 1.05 <a b<2<="" td=""><td>Yes</td><td>Possible/not</td>	Yes	Possible/not	
Yes	No	Less significant, 1.05 <a b<2<="" td=""><td>No</td><td>excluded</td>	No	excluded	
No	No	Non-significant, 1.05≤A/B	No	Unlikely	
		Significant, A/B≥2	Yes		

Extrusion of MWCNT in polyamide

Extrusion of MWCNT in polyamide

Exposure Scenario (ES)	SEM	EDX	X Real time measurements			Overall	
			Instrument	GM (GSD) for	Act ^y :Bgd	Likelihood	
				Airborne Conc			
S1 Extrusion			FMPS (N, 5-523 nm)	44,839 (1.68)	NA	NA	
Product: Polyamide (PA)	` '		APS (N, 0.5 -20 μm)	151 (1.05)	NA		
NM: None Duration: 137 mins	ID-ed	D-ed Na, Present No C	EC (personal, μg m ⁻³)	< LOD	NA	-	
Amount: 178 kg PA Control: LEV			Respirable dust (personal, μg m ⁻³)	44.5 (NA)	NA		
ES2 Extrusion of CNT- enabled product	No CNT	Cl, Si, Ca,	FMPS (5-523 nm)	30,116 (1.34)	0.67	Unlikely	
NM: CNT (pellet)	" ′		APS (0.5 -20 μm)	109 (1.2)	0.72		
Product: Polyamide Duration: 149 mins		present	EC (personal, μg m ⁻³)	< LOD	NA		
Amount: 158 kg PA & 50 kg CNT Control: LEV	No C		Respirable dust (personal, μg m ⁻³)	46.7 (22.1)	1.05		
ES3 Extrusion of powdered CNT-enabled product Few CNT NM: CNT (powder) agglom's		С	FMPS (5-523 nm)	23,045 (1.09)	0.51	Unlikely - only	
		present	APS (0.5 -20 μm)	135 (1.4)	0.89	exposure	
Product: Polyamide Duration: 205 mins	ID-ed		EC (personal, μg/m³)	11.2 (1.4)	NA	to	
Amount: 191 kg PA & 7.5 kg CNT Control: LEV			Respirable dust (personal, μg/m³)	56.1 (9.2)	1.26	agglom's	

Nano-TiO₂ synthesis by flame

pyrolysis

Nano-TiO₂ synthesis by flame pyrolysis (Cont)

Nano-TiO₂ synthesis by flame pyrolysis

Exposure Scenario	SEM	EDX	Real time measurements		Ratio of	Overall
(ES)			Instrument	GM (GSD) for	Activity:blank	Likelihood
				Concentration		
ES1 Background			FMPS (N, 5-523 nm)	42,148	NA	NA
Product: None	Inorganic &	Ti &		Í		
NM: None	soot	many		(1.32)		
Duration: 36 mins	agglomerates	inorganic	APS (N, 0.5 -20 μm)	78 (1.09)	NA	
Amount: N/A	identified	elements		, ,		
Control: considerable		and C	CPC (NCoAl ₂ O ₄ ,10-	41249	NA	
containment, LEV & GV		present	1000 nm)			
ES2 Furnace up		T: 0	FMPS (5-523 nm)	75,703	1.8	Possible/not
NM: combustion	Inorganic &	Ti &		(1.08)		excluded
products	soot	many	ABC (0.5, 20,)	,		Excluded
Product: None	agglomerates	inorganic	APS (0.5 -20 μm)	47 (1.18)	0.60	
Duration: 75 mins	identified	elements				
Amount: unknown Control: considerable		and C	CPC (NCoAl ₂ O ₄ ,10-	42767	1.04	
containment, LEV & GV		present	1000 nm)	42707	1.04	
Containment, LEV & GV						
ES3 Pyrolysis			FMPS (5-523 nm)	54,888	1.30	
NM: TiO ₂	Inorganic &	Ti &		•		Descible /pot
Product: nano-TiO ₂	soot	many		(1.15)		Possible/not
pigment	agglomerates	inorganic	APS (0.5 -20 μm)	30 (1.33)	0.38	excluded
Duration: 182 mins	identified	elements				
Amount: ~3 kg		and C	CPC (NNCoAl ₂ O ₄ ,10-	31990	0.78	
Control: considerable		present	1000 nm)	31330	0.76	
containment, LEV & GV						

Conclusions

- Taking filter samples for SEM or TEM analysis is key to identifying the nanoparticles as ENM generated by the activity but this can be tricky!
- Collection of contextual information is essential for
 - identifying all sources of nano-particles
 - assigning a concentration of airborne ENM to the activity
 - but this can be tricky!
 - Important to use a harmonised approach

Acknowledgements

GUIDEnano & NanoMICEX FP7 projects.

Grant Agreement Nos: 604387 & 280713

All companies and partners involved in WP4 for GUIDEnano & NanoMICEX.

